A Deeper Understanding of

5 Experiments

FRANCIS VIREN FERNANDES
May 25, 2013

Exp. 1 - The Water Heater
Exp. 2 - Electrolysis of Water
Exp. 3 - The Simple Atomic Pendulum
Exp. 4 - Ionization Energy of an H -atom
Exp. 5 - Gravitational Lensing

Experiment is better than theory

Equations must work for all experiments

Equations must explain all phenomena on macro and micro scale

Reality is independent of the observer

Use of addition subtraction multiplication division

Mass Frequency \& Radial length

Dimensional homogeneity for empirical equations

EXP 1. The Water Heater

Reveals the existence of a photon in electrical heating of water whose mass varies by a factor of $2 \mathrm{Pi} \times 10^{-7} \times 137.036$ depending on the method of measurement

EXP 2. Electrolysis of Water

A transient proton mass which is lighter than a proton forms when current is introduced thru water. The time period or inverse frequency of this transient proton mass is the time on the clock for hydrogen atoms to discharge at the cathode.

EXP 3. The Simple Atomic Pendulum

The equation for frequency of the oscillations of a mass hanging on a string of a pendulum is related with acceleration due to gravity g . If g is replaced with voltage V from experimentally measured electron volts eV one can derive the frequency of any atom or electron or photon. This is the unification of gravity with electromagnetism at the pendulum.

EXP 4. Ionization Energy of a H-atom

Ionization Energy of a Hydrogen Atom Electron volts eV needed to eject an electron from a gaseous hydrogen atom does not correspond with 511 keV that of an electron.
This discrepancy of 13.6 eV and 511 keV begs a question - How does an electron emerge at 13.6 eV instead of 511keV?

Experiment 5 - Gravitational Lensing

The effect of earth's acceleration due to gravity causes the effect known as gravitational lensing as observed in nano frequency shift in satellite communication. Earth's acceleration is due to 186-ether. Gravitational lensing is shown to be an ether phenomenon.

Note

Every experiment is taken from a $11^{\text {th }}$ grade Physics or Chemistry text book

All data obtained from experiment or CODATA

The deeper meaning is deduced from common knowledge

EXP 1. The Water Heater

- Consider $3.14 \times 10^{4} \mathrm{eV}$ heat from 400 Watts of power generated over 78.5 seconds.
- $\mathrm{E}=\mathrm{QVe}=5.030834304 \times 10^{-15} \mathrm{~J}=\mathrm{mc}^{2}$
- $\mathrm{m}=5.597558071 \times 10^{-32} \mathrm{~kg}$
- Utilizing $q^{2}=m \times r \times 10^{7}$
- $r=4.585874056 \times 10^{-14} \mathrm{~m}$
- Wavelength $\lambda=2$ Pi r $137.036=3.948541119 x$ $10^{-11} \mathrm{~m}$
- $c=\lambda \times f$ and so $f=7.592486667 \times 10^{18} \mathrm{~Hz}$
- Acceleration $a=25812.8076 \times f=$ volt $=$ $1.959833975 \times 10^{23} \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{QV}=\mathrm{ea}=3.14 \times 10^{4} \mathrm{eV}$
- $t^{*}=1 / f=1.317091546 \times 10^{-19} \mathrm{~s}$
$\mathrm{t}^{*}=1 / \mathrm{f}=1.317091546 \times 10^{-19} \mathrm{~s}$
The time period of the photon in relation to 78.5 seconds heating on the clock,
\# = t / t* $=78.5 / 1.317091546 \times 10^{-19}$
\# = $5.960102034 \times 10^{20}$ charges or photons
$Q=n e=5.960102034 \times 10^{20} \times 1.60217653 \times 10^{-19}$ $Q=95.49135595 \mathrm{C}$
$H=Q V=3.14 \times 10^{4}=95.49135595 \times V$
$\mathrm{V}=328.8255747$ volts
$Q=I t$
Current $\|=95.49135595 / 78.5=1.216450394 \mathrm{amps}$
Ohms $=\| / \mathrm{m}=\mathrm{c} / \mathrm{e}=1.871157469 \times 10^{27}$
Ohms $=1.216450394 / \mathrm{m}$
Photon mass $m=6.50105837 \times 10^{-28} \mathrm{~kg}$
By convention Heat $H=Q V=\left.\right|^{2} R t$
$3.14 \times 10^{4}=(1.216450394)^{2} \times 270.3156466 \times 78.5$

The resistance $\Omega=270.3156466$ $\Omega=$ velocity / charge

$$
=25812.8076 / 95.49135595
$$

where velocity is the superconducting velocity of SQUID discovered as resistance. Since voltage is acceleration resistance is velocity per coulomb charge.

Convention: $\quad \mathrm{V}=\mathrm{IR} \quad \mathrm{Q}=\mathrm{It} \quad \mathrm{P}=\mathrm{VI}$
$\mathrm{QV}=\mathrm{H}=1^{2} \mathrm{Rt} \quad \mathrm{eVe}=$ Joules energy
$\mathrm{Q}=95.49 \mathrm{C} \quad \mathrm{I}=1.21 \mathrm{~A} \quad \mathrm{R}=270.315 \Omega$
$V=328.8255747$ volt $t=78.5$ s on the clock
Discovered: That the symbols below are attributes of a photon $\mathrm{m}=5.597558071 \times 10^{-32}$ kg

$$
\begin{aligned}
& \mathrm{q}=\mathrm{e}=1.60217653 \times 10^{-19} \mathrm{C} \quad \mathrm{I}=1.21 \mathrm{~A} \\
& \mathrm{R}=\mathrm{c} / \mathrm{e}=\mathrm{I} / \mathrm{m}=1.87 \times 10^{27} \Omega \\
& \mathrm{t}^{*}=1.317091546 \times 10^{-19} \mathrm{~s}
\end{aligned}
$$

Voltage $=$ acceleration $=1.959833975 \times 10^{23}$ volt or meter per second squared

Electric Resistance is Constant

1.87×10^{27} ohms

Count atoms in a pure metal
Heat $\mathbf{H}=\mathbf{Q V}=\mathbf{e a}=\mathbf{I}^{\mathbf{2}} \mathbf{R} \mathbf{t}^{*}$

$$
\begin{aligned}
3.14 \times 10^{4}= & (1.216450394)^{2} \times 1.871157469 \times 10^{27} \\
& \times 1.317091546 \times 10^{-19}
\end{aligned}
$$

- Resistance R in Ohms,

$$
R=\frac{\lambda\left(2 \pi \times 10^{-7}\right) 137.036}{t^{*} \times Q} \Omega
$$

- $\mathrm{M} 1=5.59755805 \times 10^{-32} \mathrm{~kg}$ The mass measured by electron volts eV or ea.
- However the same mass m was measured differently via the resistance formula,
- $\mathrm{M} 2=6.50105837 \times 10^{-28} \mathrm{~kg}$ The mass measured by resistance in Ohms.
- $5.59755805 \times 10^{-32} \mathrm{~kg} / 6.50105837 \times 10^{-28} \mathrm{~kg}=$ $2 \mathrm{Pi} \times 10^{-7} \times 137.036$
- $\mathrm{M} 3=\mathrm{F} / \mathrm{a}=\mathrm{I}^{2} / \mathrm{a}=(1.216450394)^{2} /$ $1.959833975 \times 10^{23}=7.550392431 \times 10^{-24} \mathrm{~kg}$ Newton's mass
- The ratio of the two masses $\mathrm{M} 1 / \mathrm{M} 2=\mathrm{M} 2 / \mathrm{M} 3=2 \mathrm{Pi} \times \mathbf{1 0}^{\mathbf{- 7}} \times 137.036$.

Mass is an attribute of an oscillator measured differently by

$$
\mathrm{eV}, \mathrm{R}=\mathrm{I} / \mathrm{m} \text { and } \mathrm{F}=\mathrm{ma}
$$

These experimental mass measures differ by a rotational factor of

2 Pi x $10^{-7} \times 137.036$

EXP 2. Electrolysis of Water

- Consider the electrolysis of water where current passed $\mathrm{I}=0.068 \mathrm{amps}$ for time, $\mathrm{t}=$ 18000 seconds
- $\mathrm{Q}=\mathrm{It}=0.068 \times 18000=1224 \mathrm{C}$
- 1224 / $1.60217653 \times 10^{-19}=7.639607603 \mathrm{x}$ 10^{21} protons discharged at the cathode
- This can be verified by Faraday's Equation

$$
\begin{aligned}
& \Omega=\frac{c}{e}=1.871157469 \times 10^{27} \mathrm{amp} / \mathrm{kg} \\
& \Omega=\frac{I}{m}=1.871157469 \times 10^{27} \mathrm{amp} / \mathrm{kg} \\
& \Omega=\frac{0.068}{m} \\
& m=3.63411424 \times 10^{-29} \mathrm{~kg}
\end{aligned}
$$

Transient mass m

$$
\begin{aligned}
E & =m \times 2 P i \times 137.036 \times c^{2} \times 10^{-7} \\
& =2.81225386 \times 10^{-16} \mathrm{~J} \\
E & =h f
\end{aligned}
$$

$\mathrm{f}=4.24422646 \times 10^{17} \mathrm{~Hz}$
$t=1 / f=2.35614196 \times 10^{-18} s$
$18000 / 2.35614196 \times 10^{-18}=$ $7.639607603 \times 10^{21}$

$\mathrm{C}=\mathrm{r} / \mathrm{t}$ and $\mathrm{r}=2.99792458 \times 10^{8} \mathrm{x}$ $2.35614196 \times 10^{-18}$ $r=7.0635359 \times 10^{-10} \mathrm{~m}$ $q^{2}=m \times R \times 10^{7}$
 $$
\mathrm{R}=7.0635359 \times 10^{-10} \times 10^{-7} \mathrm{~m} \text { and }
$$
 $$
\mathrm{m}=3.63411424 \times 10^{-29} \mathrm{~kg}
$$

the transient mass change of a proton
$\mathrm{h} / 2 \mathrm{e}=\mathrm{I} \times \mathrm{Pi} \times \mathrm{R} \times 137.036$
$\Phi=0.068 \times \operatorname{Pi} \times 7.0635359 \times 10^{-17} \mathrm{x}$ 137.0359991

I have deconstructed the magnetic
flux quantum.

$$
\begin{aligned}
& \quad \Omega=\frac{I}{m_{\text {transient }}}=\frac{c}{e}=1.871157469 \times 10^{27} \mathrm{~m} / \mathrm{sC} \\
& \text { Proton } \quad m_{\text {transient }}=\sqrt{m_{\text {proton }} \times m_{\text {externalphoton }}}
\end{aligned}
$$

$$
\left(1.60217653 \times 10^{-19}\right)^{2}=1.672622216 \times 10^{-27} \times 1.5346978 \times 10^{-18} \times 10^{7}
$$

Transient mass
$\left(1.60217653 \times 10^{-19}\right)^{2}=3.63411424 \times 10^{-29} \times 7.06353588 \times 10^{-17} \times 10^{7}$
DC introduced mass
$\left(1.60217653 \times 10^{-19}\right)^{2}=7.89585728 \times 10^{-31} \times 3.2510334575 \times 10^{-15} \times 10^{7}$

Process

- Proton Transient mass DC introduced mass
- The energy of a proton $\mathrm{E}=\mathrm{mc}^{2}=1.50327788 \times 10^{-10} \mathrm{~J}$
- The force of 0.068 amps is $(0.068)^{2}$
- $R=E / F=1.50327788 \times 10^{-10} /(0.068)^{2}$
- $R=3.2510334575 \times 10^{-8} \mathrm{~m}$ is the radius of the photon of mass $7.89585728 \times 10^{-31} \mathrm{~kg}$ introduced by DC current.
- This photon impacts the proton mass and a new mass is formed $R=7.0635359 \times 10^{-10} \times 10^{-7} \mathrm{~m}$ and $\mathrm{m}=$ $3.63411424 \times 10^{-29} \mathrm{~kg}$.

Exp. 3-The Simple Atomic Pendulum Unification @ Pendulum

$$
\begin{array}{lll}
T=2 \pi \sqrt{\frac{l}{g}} & T=2 \pi \sqrt{\frac{m l}{m g}} & q^{2}=I^{2} \times T^{2} \\
T=2 \pi \sqrt{\frac{m l}{m g}} & T=2 \pi \sqrt{\frac{q^{2}}{I^{2}}} & \frac{m l}{T^{2}}=F \\
T=2 \pi \sqrt{\frac{m l}{F}} & F=m a \\
T^{2}=4 \pi^{2} \frac{m l}{F} & T=2 \pi \frac{q}{I} & \text { онмs LAW REWRITTEN } \\
F=4 \pi^{2} \frac{m l}{T^{2}} & q=I \times T & V=I \times R \\
F=m a & & a \times 10^{7}=\sqrt{F} \times \frac{I}{\text { mass }}
\end{array}
$$

EXP 4. Ionization Energy of a H -atom

Electron volts eV needed to eject an electron from a gaseous hydrogen atom does not correspond with 511 keV that of an electron. This discrepancy of 13.6 eV and 511 keV begs a question -

How does an electron emerge at 13.6 eV instead of 511 keV ?

The solution is at the pendulum.

$$
\mathrm{V}=\mathrm{a}=\text { acceleration }=\mathrm{g}
$$

$$
\frac{e V}{e}=V
$$

511000
$1.60217653 \times 10^{-19}$

$$
\begin{aligned}
& F=I_{1} I_{2}=m \times a \\
& F=I_{1} I_{2}=2 \times 2.425434789 \times 10^{-35} \times 3.1894 \times 10^{24} \\
& \Omega=\frac{c}{e}=\frac{I}{m}=1.871157469 \times 10^{27} \mathrm{ohms} \\
& 1.871157469 \times 10^{27}=\frac{I_{1}}{m_{1}}=\frac{I_{1}}{9.1093826 \times 10^{-31}} \\
& I_{1}=1.704508929 \times 10^{-3} \mathrm{amps} \\
& 1.871157469 \times 10^{27}=\frac{I_{2}}{m_{2}}=\frac{I_{2}}{2 \times 2.425434789 \times 10^{-35}} \\
& I_{2}=9.076740842 \times 10^{-8} \mathrm{amps} \\
& F=I_{1} \times I_{2}=1.54713858 \times 10^{-10} \mathrm{Newtons}
\end{aligned}
$$

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{l}{g}} \\
& T=2 \pi \sqrt{\frac{l \times m}{F}} \\
& \text { where } F=I_{1} \times I_{2}=1.547138581 \times 10^{-10} \mathrm{~N} \\
& T=2 \pi \sqrt{\frac{5.291772108 \times 10^{-4} \times 2 \times 2.425434789 \times 10^{-35}}{I_{1} \times I_{2}}} \\
& T=2 \pi \sqrt{\frac{q^{2}}{I^{2}}} \\
& Q=I \times T
\end{aligned}
$$

Clearly, an interaction between two Rydberg photons [corresponding with Bohr's radius L] of a hydrogen atom with one electron[corresponding with the classical electron radius, r] yields the time period or its inverse, the frequency of an electron. This is how 13.6 eV yields an electron measure of 511keV.

Touch on topics to understand the

Atomic Pendulum

1. The reason for the Coulomb constant
2. Torus versus toroid
3. Acceleration of a toroid is 10^{-7} less than acceleration of a torus
4. Rydberg number in H -atom spectra
5. Ionization energy and eV of an electron
6. eV of a Rydberg photon produces CMBR
7. Gamma factor and 2 Rydberg photons

The Coulomb Constant k

1. An electron is a photon
2. The mass of an electron divided by the 737wavemaker of mass $7.37 \times 10^{-51} \mathrm{~kg}$ yields the frequency of an electron
3. A 186-ether torus [tube] with an electron or photon [ball]comprises a twin mass
4. The number of tori is the reason for k

Twin Mass -Ether \& Matter

$\mathrm{M}_{\text {ETHER }} \times \mathrm{V}=\mathrm{M}_{\text {PHOTON }} \times \mathrm{C}$
Current I = Mether/e xv=Mphoton/e x C Point mass 737-wavemaker must exist

737 Wave-Maker

The energy of 737 equals the Planck's constant times one second

$$
7.37 \times 10^{-51} \times c^{2}=h \times 1.0
$$

$1.86 \times 10^{-9} \times V_{\text {RK }}=7.37 \times 10^{-51} \times c^{2} / 1.38 \times 10^{-29} \times 1.0$

So, the imposed condition is 1 second for the wavemaker to exist.

ETHER TOROID [T]

186ether \times velocity \times Boltzmannradius $=$ Planck'sh
$1.86 \times 10^{-9} \times 25812.8075 \times 1.380668 \times 10^{-29}=h$

Twin Mass Structure

 Ether Mass and associated charge$7.3724964 \times 10^{-51} \mathrm{~kg}$ Oscillator x frequency , $\mathrm{f}=$ Photon mass

$$
c=f \times \lambda
$$

$7.3724964 \times 10^{-51} \mathrm{~kg} \times 2.521836304 \times 10^{41}=1.859222909 \times 10^{-9} \mathrm{~kg}$
(Matter) $\mathrm{x} \#=$ (Elementary charge $/$ oxidation state)
$1.859222909 \times 10^{-9} \mathrm{~kg}$ Torus $\mathrm{x} \#=4.688655828 \times 10^{32} \mathrm{~kg}$ (186-ether)

$$
\frac{\text { ethermass }}{1.346611109 \times 10^{27} \mathrm{~kg} / \mathrm{m}}=348181.8765 \mathrm{~m}
$$

Coulomb's Constant k

 Path length of Light in a Toroid $\mathrm{k}=\mathrm{c}^{2} \times 10^{-7}$Velocity squared $=\mathrm{v} 1 \times \mathrm{v} 2$

$$
\begin{aligned}
& 258128076 \times 3.481818765 \times 10^{5}=k \\
& 2 \pi \times 137.0359999 \times 3.481818765 \times 10^{5}=c
\end{aligned}
$$

10^{7}

Squared light speed c^{2}
$25812.8076 \times 3.481818765 \times 10^{12}$
An attribute of a photon in a 186-torus

$$
\lambda=2 \pi \times R \times 10^{-7} \times 137.036 \mathrm{~m}=9.112670523 \times 10^{-8} \mathrm{~m}
$$

Coulomb constant

$$
k=c^{2} \times 10^{-7}
$$

$25812.8076 \times 3.481818765 \times 10^{5}$
An attribute of a toroid

Twin Mass Structure

 Ether Mass and associated charge$7.372496 \times 10^{-51} \mathrm{~kg}$ Oscillator \times frequency, $\mathrm{f}=$ Photon mass

$$
c=f x \lambda
$$

$$
\begin{aligned}
& 9.1093826 \times 10^{-31} \mathrm{~kg} \times \#=1.859222909 \times 10^{-9} \mathrm{~kg} \\
& \text { (Matter) } \quad \text { (Elementary charge / oxidation state) }
\end{aligned}
$$

$1.859222909 \times 10^{-9} \mathrm{~kg}$ Torus $\times 2.040997717 \times 10^{21}=$ Ether Mass (186-ether)

$$
\frac{3.794669713 \times 10^{12} \mathrm{~kg}}{1.346611109 \times 10^{27} \mathrm{~kg} / \mathrm{m}}=\text { radiusofekctron, } r
$$

Twin Mass Structure

 Ether Mass and associated charge$7.372496 \times 10^{-51} \mathrm{~kg}$ Oscillator \times frequency, $\mathrm{f}=$ Photon mass

$$
c=f x \lambda
$$

$$
\begin{aligned}
& 7.372496 \times 10^{-51} \mathrm{~kg} \times \quad \#=1.859222909 \times 10^{-9} \mathrm{~kg} \\
& \text { (Matter) } \quad \begin{array}{c}
\# \text { Elementary charge / oxidation state) }
\end{array}
\end{aligned}
$$

$1.859222909 \times 10^{-9} \mathrm{~kg}$ Torus $\times 2.040997717 \times 10^{21}=$ Ether Mass (186-ether)

$$
\frac{3.794669713 \times 10^{12} \mathrm{~kg}}{1.346611109 \times 10^{27} \mathrm{~kg} / \mathrm{m}}=\text { radiusofekctron, } r
$$

Gamma Factor Solved

So in the previous slide I have the acceleration of an electron from eV which is g in the pendulum equation

Next is the Bohr radius and its origins in the solution to the gamma factor

Bohr's velocity $\mathrm{v}=\mathrm{c} / 137.036$
Einstein's equation $\mathrm{E}=\mathrm{mc}^{2}$ can be rewritten in his own format as
$\mathrm{E}=\mathrm{mc}^{2}-\mathrm{mv}^{2}=2 \mathrm{~m}^{*} \mathrm{c}^{2}$
$\mathrm{m}\left(\mathrm{c}^{2}-\mathrm{v}^{2}\right)=2 \mathrm{~m}^{*} \mathrm{c}^{2}$
$m\left(1-v^{2} / c^{2}\right)=2 m^{*}$
Here the oscillator, m represents the mass of an electron. However the oscillator mass could be of any mass other than an electron. The periodic table will be rewritten.

Velocity, v = c/137.036
$2 \mathrm{~m}^{*}=$ twice the Rydberg mass $=2 \times 2.425434789 \times 10^{-35} \mathrm{~kg}$

Since mass is inversely proportional to time period
$T^{*}\left(1-v^{2} / c^{2}\right)=T$
I always wondered where the ionized electron got its impact momentum from.
$2 \mathrm{~m}^{*} \mathrm{c}^{2}=\mathrm{mv}^{2}$
or the energy of the Rydberg photon equals the kinetic energy of the electron
i.e $m^{*} c^{2}=1 / 2 m v^{2}$

The Rydberg photon is the reason for the spectra in the H -atom.
$\mathrm{m}^{*} \mathrm{c} \lambda=\mathrm{h}$ where the inverse of wavelength is the Rydberg wave number.
I have thus solved Einstein's equation by giving meaning to the terms in $E=m c^{2}$

$$
\begin{aligned}
& \pm m_{e}=\text { mass of an electron }=9.1093826 \times 10^{-31} \mathrm{~kg}=\underset{\text { positivive }}{\operatorname{mass} \text { of }} \\
& m_{R y d}=2.425434 .789 \times 10^{-35} \mathrm{~kg} \quad m_{e}^{+}=9.108897513 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

$$
\text { Gamma Factor }=1-\frac{v^{2}}{c^{2}}=
$$

positron gives up

$$
2 m_{R y d}=4.850869578 \times 10^{-35}
$$

2Rydlerg
of the electron

$$
f=\frac{1}{2 \pi} \sqrt{\frac{a}{L}} \rightarrow \text { Bohr Regions } q^{2}=2 M_{R Y D} \times \text { Bohr Radius }
$$

$$
\frac{1}{2} k \in \text { of } e^{-}=c^{2}\left[\left(m_{e^{-}}-m_{e_{p}^{+}}\right)\right]^{2} m_{R y d} \cdot c^{2}
$$

$$
\left[m_{e^{-}}-m_{e_{p}^{+}}\right] c^{2}=\frac{1}{2} m_{e} x v^{2}
$$

where $C=V$
(Ryd Photon 133.6 eV Photon) Pair Production 2 electrons are formed

$$
\begin{gathered}
\frac{c^{2}-v^{2}}{c^{2}}=0.999946748 \\
\frac{c^{2}}{137.036^{2}}=v^{2} \\
1-\frac{e^{2}}{137.036^{2}} \frac{1}{c^{2}}
\end{gathered}
$$ H -aton the 13.6 eV stress

 loses 2 Rydlurg photons Rydberg
(Endows the proton with t)
 we call $B E$

The Rydberg Wave Number v

- Mass, m $2.425434789 \times 10^{-35} \mathrm{~kg}$
- Radius, R $1.058354422 \times 10^{-3} \mathrm{~m}$
$q^{2}=2.425434789 \times 10^{-35} \times 1.058354422 \times 10^{-10} \times 10^{7} C^{2}$

Wavelength $\lambda=2 \pi \times R \times 10^{-7} \times 137.036 \mathrm{~m}=9.112670523 \times 10^{-8} \mathrm{~m}$

- Wavenumber $v=10973731.55 m^{-1}$

THE CMBR IS FROM A RYDBERG PHOTON

Apply Planck's BB Eq.
$0.014399644=\lambda \times T$
$0.014399644=1.058354422 \times 10^{-3} \times \mathrm{T}$
$\mathrm{T}=13.60569175 \mathrm{~K}=\mathrm{eV}=\mathrm{ea}$
The first I.E of an H-atom

$$
\begin{aligned}
& T=13.60569175 \mathrm{~K}=e \mathrm{eV}=e a \\
& a=\frac{13.60569175}{1.60217653 \times 10^{-19}}=8.492005403 \times 10^{19} \mathrm{~m} / \mathrm{s}^{2} \\
& \quad a=c \mathrm{X} f \\
& f=\frac{8.492005403 \times 10^{19}}{2.99792458 \times 10^{8}}=2.832628099 \times 10^{11} \mathrm{~Hz}
\end{aligned}
$$

THE CMBR FREQUENCY 283GHz

Exp. 5 - Gravitational Lensing Clock \equiv Time period ${ }_{1} \equiv$ Photon frequency

The prediction of GRT is correct with respect to slowing of time period when photon mass in detectors or emitters are in higher orbits above the earth. The modified gravitational lensing equation proves that earth's gravitational field alters frequency of the photon in the emitter on earth and detector in space. Photons have mass. The photon mass pulsates at a frequency. The frequency change to a lower frequency at higher orbits is called time dilation. This is red shift. 186-ether transmits light of this source photon across space. Photons do not travel. At higher orbits the ether wave is red shifted. At lower orbits the ether wave is blue shifted. The true meaning of gravitational lensing is empirically proved with and only with photon mass in instruments and 186-ether waves.

My Discoveries

ETHER IN DYNAMIC PULSATE MOTION

 186-Torus Cross SectionPLANCK ETHER MASS
186 ETHER MASS
$m_{P l} \equiv \sqrt{\frac{\hbar c}{G}}=$ Planck Mass $=2.176450474 \times 10^{-8} \mathrm{~kg}$
or $\pi \mathrm{B}^{2} \cdot 137.036=\pi \cdot(\text { Plancklength })^{2}$
I have discovered this correspondence in
the dynamic living pulsations of ether

$$
B=1.380668031 \times 10^{-36}
$$

A grade 12 Physics text book query: How $2.4 \times 10^{-3} \mathrm{~Hz}$?

Consider an emitted frequency on earth of

$$
1.1 \times 10^{8} \mathrm{~Hz}
$$

$2.0 \times 10^{5} \mathrm{~m}$ above the earth a satellite detects a frequency shift of

$$
2.4 \times 10^{-3} \mathrm{~Hz}
$$

$$
\begin{aligned}
& E=h \cdot f=6.6260693 \times 10^{-34} \times 1.1 \times 10^{8} \mathrm{~J} \\
& E=7.28867623 \times 10^{-26} \mathrm{~J} \\
& E=m \cdot c^{2} \\
& m=\frac{E}{c^{2}}=\frac{7.28867623 \times 10^{-26}}{c^{2}} k g \\
& m=8.10974602 \times 10^{-43} \mathrm{~kg}
\end{aligned}
$$

Now, consider the gravitation potential experienced by this photon mass.

$$
\begin{aligned}
& E=m \cdot g \cdot h \\
& E=8.10974602 \times 10^{-43} \times 9.804 \times 2.0 \times 10^{5} \mathrm{~J} \\
& E=1.590159 \times 10^{-36} \mathrm{~J} \\
& E=1.590159 \times 10^{-36} \mathrm{~J}=h \cdot f \\
& f=\frac{E}{h}=\frac{1.590159 \times 10^{-36}}{6.6260693 \times 10^{-34}} \mathrm{~Hz} \\
& f=2.4 \times 10^{-3} \mathrm{~Hz}
\end{aligned}
$$

By GRT convention, photons are mass-less

$$
\frac{\Delta f}{f}=\frac{g \Delta h}{c^{2}}
$$

And now modified, photons with mass m amidst the decorations

$$
\frac{\Delta f}{f}=\frac{m \cdot g \Delta h}{m \cdot c^{2}}
$$

$$
G=\frac{1.380668031 \times 10^{-86}}{1.859222909 \times 10^{-9}} \cdot c^{2}
$$

$$
K=\frac{m}{r}=\frac{\wp}{B}=\frac{1.859222909 \times 10^{-9}}{1.350668031 \times 10^{-36}}=1.346611109 \times 10^{27} \mathrm{~kg} / \mathrm{m}
$$

$$
\text { Ether }=1.346611109 \times 10^{27} \times 6.371 \times 10^{6}=8.57926 \times 10^{33} \mathrm{~kg}
$$

Mass of earth $x^{2}=$ Mass of entrained ether $x v^{2}$
where $v^{2} / r=9.8 \mathrm{~m} / \mathrm{s}^{2}$
acceleration due to ether

Velocity squared of light speed c^{2} $25812.8076 \times 3.481818765 \times 10^{12}$ An attribute of a photon in a 186-torus Coulomb constant k $25812.8076 \times 3.481818765 \times 10^{5}$ An attribute of a torroid

Boltzmann constant k - no meaning
$2 \pi \times 10^{-7} \times 137.036 \times e=k$

$P \vee=k T$

I^{2}
$\overline{R_{1} \times R_{3}} \times R_{1} \times R_{2} \times R_{3}=$
Temperature, $T=e \times a$
Wien: $2.9 \times 10^{-3}=\lambda T=\lambda \times e a$
Planck: $0.0144=\lambda \times \mathrm{eV}$
$\frac{F}{A} \times V=2 \pi \times 10^{-7} \times 137.036 \times E$
$E^{*}=\left(8.610225384 \times 10^{-5}\right) E$

Larmor frequency \& precession solved

$$
\begin{aligned}
& \omega=2 u_{e} B \frac{2 \pi}{h}=2\left(\frac{h}{2 \pi} \times \frac{e}{2 m_{e}}\right) B \frac{2 \pi}{h} \\
& u_{e}=9.274009408 \times 10^{-24} \mathrm{~J} / \text { Tesla } \\
& u_{e} \text { Magneton } \\
& B=60487.75593 \text { Tesla } \\
& \omega=\frac{e}{m_{e}} B=\frac{e}{m_{e}} \times \frac{I}{r_{e}}=\frac{e}{e^{2}} \times \frac{e}{t}\left[\text { where } \Omega=\frac{I}{m_{e}}=1.87 \times 10^{27} \Omega\right] \\
& \omega=\frac{1}{t}=f=1.063870815 \times 10^{16} \mathrm{~Hz}[\text { angular }, f] \\
& \text { Larmor }, f=\frac{\omega}{2 \pi}=27.99249144 M H z[1 \text { Tesla }] \\
& E=h f=6.6260693 \times 10^{-34} \times 1.063870815 \times 10^{16} \\
& E=7.049281746 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Electron Precession Under Tesla Influence

$$
\begin{aligned}
& E=7.049281746 \times 10^{-18} \mathrm{~J} \\
& E=m c^{2} \\
& m=7.84338373 \times 10^{-35} \mathrm{~kg} \\
& \frac{m}{m_{e}}=\frac{7.84338373 \times 10^{-35}}{9.1093826 \times 10^{-31}}=2 \pi \times 10^{-7} \times 137.036 \\
& E=m c^{2}=k T \\
& T=511 \mathrm{keV}
\end{aligned}
$$

Empirical Equations Obey A Twin Mass - Photon in 186-tube

Photon mass, m and radius, r $737 \times$ frequency $=m$	$h=m \times R k \times r$ Associated with the Von Klitzing constant, Rk
Charge squared of a photon particle, q^{2}	$q^{2}=m \times r \times 10^{7} C^{2}$ Photon mass pulsates thru radius, r
The ether wave	$\lambda=2 \pi \times r \times 137.036 \mathrm{~m}$ Created by a photon of radius, r
Cross section area, A of a photon	$A=\pi \times(r)^{2} \times 137.036 m^{2}$ The photon radial extension of 137.036 is involved
Current, I	$\frac{1.16 \times 10^{10} \times v}{1 C} A \quad \text { or } \quad \frac{m \times c}{e}$ The momentum of 116-ether \& rolling photon
Current squared, I^{2}	$I^{2}=F, \text { force } N$ Unity of electric current and the force of gravity

EM - of a twin mass

Magnetic field, B	$\mathrm{B}=\frac{\mathrm{I}}{r} \mathrm{~A} / \mathrm{m}$ Current per photon radius
Electric field, E	$\mathrm{E}=\frac{\mathrm{I}}{t} \mathrm{~A} / \mathrm{s}$
Resistance, R	Force per unit elementary photon charge
$R=\frac{I}{186}=\frac{v}{q}=\frac{I}{m} \mathrm{~A} / \mathrm{kg}$	
Magnetic flux, Φ_{B}	$\Phi_{B}=\frac{I}{r} \times A \quad$ or $\quad \Phi_{B}=I \times \pi \times r \times 137.036 \mathrm{~Wb}$
Current associated with one 186 -ether mass or one photon	

Electron volts eV = Heat H

Electron volts, eV	$\mathrm{eV}=r \times E=r \times \frac{F}{q} \mathrm{~N} . \mathrm{m} / \mathrm{C}$
Electric field acting thru a distance, r	
Heat, H	$H=\frac{1.16 \times 10^{10} \times v^{2}}{1 C} \mathrm{~J}$
Energy associated with 1 coulomb of ether	
Voltage, V	The gravitational acceleration of a photon body
Source of light speed, c	$c=\frac{r}{t}=\frac{1.380668031 \times 10^{-29}}{4.605412826 \times 10^{-38}} \mathrm{~m} / \mathrm{s}$
The pulsate velocity of 186 -ether	

186-Ether force, F	$F=1.210273708 \times 10^{44} \mathrm{~N}$ The force of 186 -ether at speed of light, c
Electron Photon force, F	$F=29.05350661 \mathrm{~N}$ The force of an electron -a photon at pulsate speed, c
Ether contained within photon radius, r	$r \times 1.346611109 \times 10^{27} \mathrm{~kg}$ The ether mass consists of myriads of 186-ether
Planck derivation BB	$0.0144=\lambda \mathrm{T}^{*}=\lambda \mathrm{eV}$ where $\mathrm{T}^{*}=\mathrm{eV}$ mass equivalent
Wien's law BB	$\frac{I^{2}}{2.9 \times 10^{-3}=\lambda \mathrm{T}=\lambda \mathrm{eV} \text { where } \mathrm{T}=\text { Kelvin temperature }} \times R_{1} \times R_{2} \times R_{3}=2 \pi \times 10^{-7} \times 137.036 \times e \times e \times a$

ETHER TOROID [Ђ]

186ether \times velocity \times Boltzmannradius $=$ Planck'sh
$1.86 \times 10^{-9} \times 25812.8075 \times 1.380668 \times 10^{-29}=h$

SIGNIFICANCE

5 experiments point to structure

Bohr radius
Rydberg constant
2Rydberg photons
Compton wavelength
186-ether
Coulomb constant
Velocity squared
Speed of light squared
Black body radiation
Planck and Wien equations
SQUID
FTL
Newton's G
Electric \& Magnetic Fields
737-oscillator

The pendulum equation Boltzmann constant
Ideal gas equation
Maxwell drift velocity
Gamma factor
Earth's acceleration g
Gravitational lensing
Redifining Ohms Law
Charge squared equation
Ether constant
Ether force
Electron volt

